Abstract

The mechanisms underlying the thermal conductivity behavior of nanofluids have not been completely clarified thus far. This is due to the various competing factors and the lack of a molecular-level understanding of the heat transfer enhancement of nanofluids. In this study, energy-conserving dissipative particle dynamics simulations were conducted to investigate the effects of the self-assembly of nanoparticles (NPs) on the nanoscale heat transfer properties. We demonstrated that considering the balance between the effects of the distance between the NPs and the solvent and the enhancement in thermal conductivity on adding NPs is important for controlling the thermal conductivity of nanofluids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call