Abstract

It has been found out that the metals and alloys produced by rapid cooling techniques have better structural and mechanical properties. The cooling rate is a critical factor affecting the resulting structure of a liquid-solid transition. The solidification of Al-33 wt% Cu is studied with the constant-volume and constant-temperature molecular dynamics technique to obtain an atomic description of structural transformation. The system is modelled by using embedded atom method (EAM) including many body interactions. Molecular dynamics simulation study based on the EAM potential is carried out to study the unidirectional solidification behaviour of Al-33 wt% Cu alloy. The radial distribution function during cooling and heating processes provides a good picture of the structural transformation, i.e., solid to liquid and again solid which has crystalline in nature. From the simulation result, it was found that the solid/liquid interface moves smoothly unidirectionally with an interface velocity of 9 m/s. This simulation study gives a clear picture of the rapid solidification of Al-Cu alloy at atomic level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.