Abstract

We present a model equation that describes nucleation and growth of hemispherical nanoclusters or islands deposited on a substrate for the small surface coverage case. The model is formulated in terms of a set of rate equations for the island sizes, combined with the time-dependent behavior of supersaturation and island nucleation rate. As an example to demonstrate the usefulness of the model, we study effects of the deposition rate of adatoms on the nanocluster growth. Large-scale computer simulation results show that the broadness of island size distribution is a decreasing function of the deposition rate for small rates, and bimodal distributions are obtained for large rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.