Abstract

We propose the Langevin-type microscopic equations of motion for magnetic fluids. Magnetic fluids are modeled as an ensemble of interacting ferromagnetic nanoparticles suspended in a viscous fluid. The present model is described in terms of position vectors of nanoparticles and orientation vectors of their magnetic dipole moments. In this model, forces and torques arising from the magnetic origin and the surrounding fluid flow are included. Effects of non-spherical particle shape are also taken into account. From the Brownian dynamics simulations of the model, it is found that the present model exhibits various microstructure formation processes in magnetic fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.