Abstract

The existing mechanical wear detection methods cannot accurately obtain the state characteristic data of mechanical equipment, resulting in high detection accuracy but low detection efficiency. In order to obtain more ideal results of mechanical wear detection, the mechanical wear detection technology of a high-power diesel engine based on thermodynamic coupling is designed. Through the coupling of thermodynamics, the thermal stress in the body is solved under the temperature field and corresponding boundary conditions. The state data of mechanical equipment are collected, the wavelet entropy in the state data of mechanical equipment is extracted as the feature of mechanical wear detection, and the least squares support vector machine is used to establish the mechanical wear detection model. The multi-domain unified language modelica is used to model the thermodynamic module and dynamic module of the diesel engine, respectively, to realize the joint simulation of thermodynamics and dynamics, and improve the simulation technology of mechanical wear detection of the high-power diesel engine. Through the simulation and verification test, it is found that the mechanical wear detection time is shorter, the mechanical wear detection efficiency is higher, and it has better practical application value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.