Abstract

<p>In the context of an increased public interest in climate-relevant processes, a number of studies on Next Generation Gravity Missions (NGGMs) have been commissioned to better map mass transport processes on Earth. On the basis of the successfully completed gravity field missions CHAMP, GOCE and GRACE as well as the current satellite mission GRACE-FO, different concepts were examined for their feasibility and economic efficiency. The focus is on increasing the spatiotemporal resolution while simultaneously reducing the known error effects such as the aliasing of temporal gravity fields due to under-sampling of signals and uncertainties in ocean tide models. An additional inclined pair to a GRACE-like satellite pair (Bender constellation) is the most promising solution. Since the costs for a realization of the Bender constellation are very high, this contribution focuses on alternative concepts in the form of different constellations and formations of small satellites. The latter includes both satellite pairs and chains consisting of trailing satellites. The aim is to provide a cost-effective alternative to the previous gravity field satellites while simultaneously increasing the spatiotemporal resolution and minimizing the above mentioned error effects. In numerical closed-loop simulations, various scenarios will be conducted which differ in orbit parameters like shape and number of orbits, the number of satellites per orbit and instrument performances. Additionally, the impacts from the co-parametrization of non-tidal temporal gravity field signal and ocean tides on the gravity field solutions, obtained by the different concepts, will be investigated. In particular the possibilities and limits with multiple satellites pairs for achieving the highest possible spatial and temporal resolution in (sub-)daily temporal gravity fields shall be analysed in detail.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.