Abstract

The function mechanism of different types of aging precipitates in localized corrosion of Al alloys was studied. The function mechanism of the precipitates of θ (Al 2Cu) and η (MgZn 2) is validated. The precipitate of θ containing noble element Cu is cathodic to the alloy base, resulting in the anodic dissolution and corrosion of the alloy base at its adjacent periphery. The precipitate of η containing active element Mg is anodic to the alloy base, anodic dissolution and corrosion occur on its surface. Meanwhile, a localized corrosion mechanism conversion associated with the precipitate of T1 (Al 2CuLi) is advanced, which contains noble element Cu and active element Li simultaneously. The precipitate of T1 is anodic to the alloy base and corrosion occurs on its surface at the beginning. However, during its corrosion process, the preferential dissolution of Li and the enrichment of noble element Cu make its potential move to a positive direction. As a result, the corroded T1 precipitate becomes cathodic to the alloy base at a later stage, leading to the anodic dissolution and corrosion of the alloy base at its adjacent periphery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.