Abstract

Simulation experiments were performed to investigate the characteristics of information extraction in multiple-image radiography (MIR) based on geometrical optics approximation. Different Poisson noise levels were added to the simulation, and the results show that Poisson noise deteriorates the extraction results, with the degree of refraction > USAXS > absorption. The effects of Poisson noise are negligible when the detector’s photon counts are about 1000 ph/pixel. A wider sampling range allows more accurate extraction results, but a narrower sampling range has a better signal-to-noise ratio for high Poisson noise levels, e.g., PN(10). The sampling interval can be suitably increased with a minor impact on the extraction results for low Poisson noise levels (PN(10000)). The extraction results are incomplete because a portion of the sample-rocking curve is beyond the sampling range. This induces artifacts in the images, especially for strong refraction and USAXS signals. The artifacts are not obvious when the refraction angle and standard deviation of the USAXS are smaller than the sampling range by an order of magnitude. In general, the absorption barely affects the extraction results. However, additional Poisson noise will be generated when the sample is made of high-Z elements or has a large size due to the strong absorption. Here, the extraction results will deteriorate, and additional exposure time is required. This simulation provides important details on practical applications of MIR, with improvements in information extraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call