Abstract

With frequent outbreaks of COVID-19, the rapid and effective construction of large-space buildings into Fangcang shelter hospitals has gradually become one of the effective means to control the epidemic. Reasonable design of the ventilation system of the Fangcang shelter hospital can optimize the indoor airflow organization, so that the internal environment can meet the comfort of patients and at the same time can effectively discharge pollutants, which is particularly important for the establishment of the Fangcang shelter hospital. In this paper, through the reconstruction of a large-space gymnasium, CFD software is used to simulate the living environment and pollutant emission efficiency of the reconstructed Fangcang shelter hospital in summer under different air supply temperatures, air supply heights and exhaust air volume parameters. The results show that when the air supply parameters are set to an air supply height of 4.5 m, an air supply temperature of 18 °C, and an exhaust air volume of a single bed of 150 m3/h, the thermal comfort can reach level I, and the ventilation efficiency for pollutants can reach 69.6%. In addition, the ventilation efficiency is 70.1% and 70.3% when the exhaust air volume of a single bed is continuously increased to 200 and 250 m3/h, which can no longer effectively improve the pollutant emission and will cause an uncomfortable blowing feeling to patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call