Abstract

In order to investigate the characteristics of elliptical ultrasonic vibration cutting of TiC particle-reinforced titanium matrix composites, a two-dimensional thermodynamic coupled finite element cutting model was established based on the Johnson-Cook intrinsic structure model using ABAQUS simulation software, and the changes in cutting force, cutting temperature, machined surface shape, and particle fragmentation were obtained under the traditional cutting method and ultrasonic elliptical vibration cutting method. The results show that under the same process parameters, ultrasonic elliptical vibration cutting is better than conventional cutting in terms of surface profile; the stress direction tends to be horizontal during cutting and the TiC particles are mainly removed by cutting off. The average cutting force is significantly lower than conventional cutting, with a maximum reduction of 60%. The cutting temperature is also reduced, with a reduction of approximately 17.6%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call