Abstract
Anion exchange membranes (AEMs) can be cheaper alternatives than proton exchange membranes, but a key challenge for AEMs is to archive good ionic conductivity while maintaining mechanical strength. Diblock copolymers containing a mechanically strong hydrophobic block and an ion-conducting hydrophilic block have been shown to be viable solutions to this challenge. Using our recently developed reactive hydroxide model, we investigate the effects of block size on the hydroxide solvation and transport in a diblock copolymer (PPO-b-PVBTMA) in its highly hydrated state. Typically, both hydroxide and water diffusion constants decrease as the hydrophobic PPO block size increases. However, phase separation takes place above a certain mole ratio of hydrophobic PPO to hydrophilic PVBTMA blocks and we found it to effectively recover the diffusion constants. Extensive analyses reveal that morphological changes modulate the local environment for hydroxide and water transport and contribute to that recovery. The activation energy barriers for hydroxide and water diffusion show abrupt jumps at the same block ratios when such recovery effects begin to appear, suggesting transformation of the structure of water channels. Taking the advantages of partial phase separation can help optimize both ionic conductivity and mechanical strength of fuel cell membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.