Abstract

The objective of this work was to use the Geant4 toolkit to perform simulation studies on the personal dose response of fluorescent nuclear track detectors (FNTDs). The entire structure of the FNTD response can be designed, and the detector’s energy and dose responses can be optimized in a broad energy range (0.01 eV–20 MeV). In general, the detectors used 6LiF and CH2 converters that have high energy and high dose response at neutron energies lower than 10 eV and greater than 1 MeV, respectively. The method of least squares was used to optimize the dose response of H*(10) and the energy response corresponding to Rtotal. The values of the optimized response of H*(10) lie between 0.8 and 1.4, corresponding to the energy ranges 0.01 eV–70 keV and 4–14 MeV, respectively. This occupies nearly eight out of the nine orders of the total energy range. Even though the optimized response of Rtotal is constrained between 0.89 and 1.1 in the energy range of 0.01 eV–20 MeV, it is suitable for obtaining the broad neutron spectrum of fluence with good accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.