Abstract

This paper describes a numerical approach to the modeling of PNP HBTs in the InP-based materials systems (InP/InGaAs and InAlAs/InGaAs). Initial device analysis was achieved in the drift-diffusion limit by self-consistent numerical solution of the Poisson, carrier continuity and conductor equations subject to the device's geometry and boundary conditions imposed by the device's biasing. Simulation results are compared with the available experimental results and good agreement is found. For the InP/InGaAs and InAlAs/InGaAs heterojunctions, the valence band discontinuities are larger than for the AlGaAs/GaAs system so grading of the emitter-base junction and tunneling effects are important. For completeness, nonclassical effects were also considered. For the emitter-base junctions, hole tunneling was considered, particularly at low forward bias. The inverse dependence of the hole tunneling on effective mass was found to lead to significantly more light hole than heavy hole tunneling in calculating the emitter injection current. In addition, since very narrow base regions (25-35 nm) can be employed while keeping the base spreading resistance low due to the electron's higher mobility, ballistic hole transport should also be considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.