Abstract

In this work, we use a 3-nm-thick Al0.64In0.36N back-barrier layer in In0.17Al0.83N/GaN high-electron mobility transistor (HEMT) to enhance electron confinement. Based on two-dimensional device simulations, the influences of Al0.64In0.36N back-barrier on the direct-current (DC) and radio-frequency (RF) characteristics of InAlN/GaN HEMT are investigated, theoretically. It is shown that an effective conduction band discontinuity of approximately 0.5 eV is created by the 3-nm-thick Al0.64In0.36N back-barrier and no parasitic electron channel is formed. Comparing with the conventional InAlN/GaN HEMT, the electron confinement of the back-barrier HEMT is significantly improved, which allows a good immunity to short-channel effect (SCE) for gate length decreasing down to 60 nm (9-nm top barrier). For a 70-nm gate length, the peak current gain cut-off frequency (fT) and power gain cut-off frequency (fmax) of the back-barrier HEMT are 172 GHz and 217 GHz, respectively, which are higher than those of the conventional HEMT with the same gate length.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call