Abstract

Wear of diamond tool has always been a limiting factor in ductile regime machining of large size silicon components. In order to understand the tool wear phenomena, it is non-trivial to know the process outputs especially cutting forces, stresses and temperature during nanometric turning. In this paper, a realistic potential energy function has been deployed through molecular dynamic (MD) simulation, to simulate the process outputs of single diamond turning operation against single crystal silicon. The simulation result suggests that wear mechanism of diamond tool is fundamentally governed by these process parameters and thus critical.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.