Abstract
Missing value especially in environmental study is a common problem including in rainfall modelling. Incomplete data will affect the accuracy and efficiency in any modelling process. In this study, simulation method is used to demonstrate the efficiency of the old normal ratio inverse distance correlation weighting method (ONRIDCWM) in solving missing rainfall data. The simulation study is used to identify the best parameters for correlation power of p, percentage of missing value and sample size, n of the ONRIDCWM through simulating for 10,000 times by varying the value of the parameters systematically. The results of the simulation are compared with other available weighting methods. The estimated complete rainfall data of the target station are compared and assessed with the observed data from the neighbouring station using mean, estimated bias (EB) and estimated root mean square error (ERMSE). The results show that ONRIDCWM is better than the other weighting methods for the correlation power of p at least four. For illustration of the weighting method, monthly rainfall data from Pahang is used to demonstrate the efficiency of the method using three error indices: S-Index, mean absolute error (MAE) and correlation, R.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.