Abstract

A simulation study for high temperature chemical vapor deposition (HTCVD) of silicon carbide (SiC) is presented. Thermodynamic properties of the species were derived from the first-principles calculations in order to evaluate the activation energy (Ea) in the gas phase reaction. Pathways producing SiC2 and Si2C from SiCl4-C3H8-H2 system were proposed to investigate the effect of chlorinated species on HTCVD. A thermo-fluid analysis was carried out to estimate the partial pressures of the species. It was found that the main sublimed species of Si, SiC2, Si2C decreased in the SiCl4-C3H8-H2 system compared to the SiH4-C3H8-H2 system. This suggests that the growth rate would decrease in the atmosphere of chlorinated species at around 2500°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.