Abstract

ABSTRACT The results of a numerical study of the problem of multimode heat transfer from a square-shaped electronic device provided with three identical flush-mounted discrete heat sources are presented here. Air, a radiatively nonparticipating fluid, is taken to be the cooling medium. The heat generated in the discrete heat sources is first conducted through the device, before ultimately being dissipated by convection and surface radiation. The governing partial differential equations for temperature distribution are converted into algebraic form using a finite-volume based finite difference method, and the resulting algebraic equations are subsequently solved using Gauss-Seidel iterative procedure. A grid size of 151 × 91 is used for discretizing the computational domain. The effects of all relevant parameters, including volumetric heat generation, thermal conductivity, convection heat transfer coefficient, and surface emissivity, on various important results, such as the local temperature distribution, the peak temperature of the device, and the relative contributions of convection and surface radiation to heat dissipation from the device, are studied in sufficient detail. The exclusive effect of surface radiation on pertinent results of the present problem is also brought out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.