Abstract

The paper presents simulation studies, performed using Simulink, the impact of nonlinear flexural stiffness of shafts for critical speed range and amplitude of vibration. The tests were performed on the selected model of a rotating machine, consisting of a drive, two torsional vibration dampers, shaft with mounted on it two rigid rotors (discs), supported on a three self-aligning roller bearings and mechanical power receiver (brake). The machine startup and braking with crossing the critical states was simulated using specialized Simulink library, which was developed by authors for analysis of transient states in rotating machines and flexural-torsional couplings. In accordance with the concept of modeling adopted by the authors, rotating system is divided into inertial rigid elements (rotors, bearings, clutches, etc..) and compliance elements (parts of the shaft). The main component of the currently developed library is block modeling rigid rotor with 6 degrees of freedom and with the static and dynamic unbalance. By assumption the library is a modular, expandable and allows modeling the systems of any configuration. The goal of the simulation was to verify how nonlinear flexural stiffness of shaft influences the values of critical speeds and the level of flexural and torsional vibrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call