Abstract

Direct numerical simulations are performed to investigate the microstructure of sedimenting particles, using a smoothed profile method. We used pair distribution function to find out particle preference to orient themselves with respect to a test particle. We found that at low Peclet number (Pe), particles show an isotropic microstructure due to strong effects of thermal fluctuations and with increasing Pe at , particles prefer to orient themselves in the horizontal direction due to dominance of hydrodynamic interactions at low volume fraction. This preference decreases with increasing volume fraction and at high volume fraction (), microstructure becomes isotropic due to dominance of many-body interactions. The microstructure analysis at high Reynolds number (Re = 1, 10) revealed the deficiency of the particles in the vicinity of a test particle. This deficiency decreases with the increase of volume fraction and at high volume fraction, we observed an isotropic microstructure due to many-body interactions. Moreover, we also observed that the range of volume fraction affected by this deficiency increases with increasing Re.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.