Abstract

Based on accumulating evidence, simulation appears to be a basic computational mechanism in the brain that supports a broad spectrum of processes from perception to social cognition. Further evidence suggests that simulation is typically situated, with the situated character of experience in the environment being reflected in the situated character of the representations that underlie simulation. A basic architecture is sketched of how the brain implements situated simulation. Within this framework, simulators implement the concepts that underlie knowledge, and situated conceptualizations capture patterns of multi-modal simulation associated with frequently experienced situations. A pattern completion inference mechanism uses current perception to activate situated conceptualizations that produce predictions via simulations on relevant modalities. Empirical findings from perception, action, working memory, conceptual processing, language and social cognition illustrate how this framework produces the extensive prediction that characterizes natural intelligence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.