Abstract

Nozzle-flapper type electro-hydraulic servo valve operated by torque motor has been widely used in industrial applications. As their bandwidths are limited, they are not suitable for high-speed applications. This paper presents a novel nozzle flapper valve driven by the giant magnetostrictive actuator, which has been designed and integrated into the four-nozzle flapper valve to replace the torque motor. And the influence of involved structural parameters on the dynamics of the actuator and the nozzle flapper valve is analyzed by AMESim. The simulation results can provide an important reference and basis for the optimization and design of the four-nozzle flapper valve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.