Abstract

Abstract In this paper, the simulation model of two-dimensional (2D) distribution parameter of a CO2 microchannel evaporator was developed using the finite element method. The simulation model of the CO2 microchannel evaporator was written using matlab both considering the dry and wet conditions on air side, and different heat transfer characteristics of CO2 in two-phase region and overheated region. The experimental and simulation results in terms of CO2 temperature, wall temperature, inlet and outlet air temperatures, and convective heat transfer coefficient were compared. The simulation results have the same tendency with the experimental correlation results. The convective heat transfer efficient increases with the growth of CO2 inlet dryness, mass flow rate and air speed, while decreases along with the increase of evaporation pressure in two-phase region. The dry-out point appears earlier with larger CO2 inlet dryness, and higher air temperature, humidity and speed; however, it appears later with the increasing evaporation pressure and mass flow rate. The convective heat transfer coefficient at the dry-out point decreases dramatically due to the deteriorated heat transfer at this position, which indicates the necessity to prevent or retard the appearance of dry-out point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.