Abstract
Simulation has been applied in many optimization problems to evaluate their solutions' performance under stochastic environment. For many approaches solving this kind of simulation optimization problems, most of the attention is on the searching mechanism. The computing efficiency problems are seldom considered and computing replications are usually equally allocated to solutions. In this paper, we integrate the notion of optimal computing budget allocation (OCBA) into a simulation optimization approach, Particle Swarm Optimization (PSO), to improve the efficiency of PSO. The computing budget allocation models for two versions of PSO are built and two allocation rules PSOs_OCBA and PSObw_OCBA are derived by some approximations. The numerical result shows the computational efficiency of PSO can be improved by applying these two allocation rules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.