Abstract

Water resources sustainability is a worldwide concern because of climate variability, growing population, and excessive groundwater exploitation in order to meet freshwater demand. Addressing these conflicting challenges sometimes can be aided by using both simulation and mathematical optimization tools. This study combines a groundwater-flow simulation model and two optimization models to develop optimal reconnaissance-level water management strategies. For a given set of hydrologic and management constraints, both of the optimization models are applied to part of the Mahanadi River basin groundwater system, which is an important source of water supply in Odisha State, India. The first optimization model employs a calibrated groundwater simulation model (MODFLOW-2005, the U.S. Geological Survey modular ground-water model) within the Simulation-Optimization MOdeling System (SOMOS) module number 1 (SOMO1) to estimate maximum permissible groundwater extraction, subject to suitable constraints that protect the aquifer from seawater intrusion. The second optimization model uses linear programming optimization to: (a) optimize conjunctive allocation of surface water and groundwater and (b) to determine a cropping pattern that maximizes net annual returns from crop yields, without causing seawater intrusion. Together, the optimization models consider the weather seasons, and the suitability and variability of existing cultivable land, crops, and the hydrogeologic system better than the models that do not employ the distributed maximum groundwater pumping rates that will not induce seawater intrusion. The optimization outcomes suggest that minimizing agricultural rice cultivation (especially during the non-monsoon season) and increasing crop diversification would improve farmers’ livelihoods and aid sustainable use of water resources.

Highlights

  • Rapid population growth and climate change are likely to increase the risk of water shortage.Changing seasonal patterns of water availability will adversely impact social and economic development [1]

  • The greatest rainfall variation occurred from May to October, and the least variation occurred from November to April

  • These findings suggest that the Resource Optimization Model (ROM) provides reasonable results in terms of optimal annual income and the utilization of available land and water resources

Read more

Summary

Introduction

Rapid population growth and climate change are likely to increase the risk of water shortage. Changing seasonal patterns of water availability will adversely impact social and economic development [1]. Water-energy-food system complexity, uncertain future climatic events, unsustainable abstraction of groundwater, and contamination from different sources pose challenges to resource planners and managers [2,3]. Coping with these challenges and strengthening water security require an adaptive integrated framework that endorses and facilitates coordinated development and the management of water, land, and related resources [4,5,6]. Public Health 2020, 17, 3521; doi:10.3390/ijerph17103521 www.mdpi.com/journal/ijerph

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call