Abstract

This study on thermodynamic property of NH3-CO2-H2O system provided the basic data for ammonia carbonation. Simulations on vapor-liquid equilibrium (VLE) of ammonia carbonation with different physical properties were discussed in NH3-H2O and NH3-CO2-H2O systems, respectively. The results indicated that at low temperature (303.15 K-363.15 K) and pressure (0.1–0.4 MPa), the PR (Peng-Robinson) equation was suitable for the description of the thermodynamic state in NH3-H2O system. NRTL (Non-Random-Two-Liquid) series models were selected for NH3-CO2-H2O mixed electrolyte solution system. VLE data regression results showed that NRTL series models were suitable for describing thermodynamic properties of NH3-CO2-H2O system, because average relative error fitting with each model was about 1%. As an asymmetric electrolytes model in NRTL model, E-NRTLRK (Electrolyte NRTL Redlich Kwong) could most accurately fit VLE data of NH3-CO2-H2O system, with fitting error less than 1%. In the extent temperature range of 273.15 K-363.15 K, the prediction of product component using E-NRTLRK model for ammonia carbonation agreed well with the data reported in literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.