Abstract

The thermal behavior during electron beam welding on magnesium alloy were analyzed and simulated. According to the thermal effect of the electron-beam-generated keyhole, a mathematic model of rotary Gaussian body heat source with incremental power-density-distribution was developed. This model can be useful for simulating the thermal effect of metal vapor plasma on the surface of the workpiece and the deep-penetrating effect of the electron beam. By the action of thermal model, the characteristics of temperature field during vacuum electron beam welding on AZ61 magnesium alloy were studied by the method of finite element analysis. And then, the influence of welding parameters on the temperature distributions and the weld contours were analyzed. The simulations and experiments showed that the different deep-penetration effects and temperature distributions were achieved with the varying welding energy inputs, and the metal vapor plasma has a significant impact on the weld contour of magnesium alloy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.