Abstract

Heat-assisted magnetic recording (HAMR) is promising for achieving more than 1 Tb/inch2 recording density. A near-field transducer (NFT), which forms a hot spot of 10–100 nm in diameter on a recording medium, is necessary in HAMR. In this study, localized surface plasmons generated by a metal nano-dot in a novel device for a heat source of heat-assisted magnetic recording were analyzed using a simple model in which a metal hemisphere was formed on a GaAs substrate and a quasi-electrostatic approximation. The scattering and absorption efficiencies as well as the enhancement factor were investigated for several kinds of metal. As a result, their dependence on the wavelength and the polarization direction of the incident light was clarified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call