Abstract

X-ray computed tomography was used to obtain cross-sectional images of a unidirectional carbon fiber-reinforced plastic, where fiber locations in each cross-sectional image were identified. The three-dimensional model with fiber waviness was developed by connecting the fiber locations along the fiber direction. Numerical simulation for the initiation and formation of a kink-band during axial compression was performed using the three-dimensional finite element model. The load was increased almost linearly until it reached the compressive strength, after which both load and displacement were decreased, showing snap-back behavior. The matrix yielded locally with the increased axial compression, and fibers started to fall due to insufficient support by the yielded matrix. A kink-band was formed with an increase in the yielded area, and thus, the initiation of a kink-band was defined as the local yielding of the matrix. It was also shown that the kink-band was formed at the longitudinal location at which the average of initial local fiber misalignment angles in the cross-section was relatively large.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.