Abstract

We theoretically simulate the antireflective effects of oxide nanosphere monolayer films in the visible spectrum. The essential geometric and material parameters of nanosphere films are simulated and different functions are proposed to describe the dependence of reflectance on the influencing factors. The rational function is fitted to describe the monotonic decreasing of reflectance on the ratio of nanospheres' radius to incident wavelength. At a wavelength of 550 nm and incidence at 75°, the reflectance of the glass substrate coated with SiO2 decreases to 14.1% compared with 41.7% of the uncoated glass. The results have an excellent potential for applications in optical devices such as filters, polarizing elements, and camera lenses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.