Abstract

X-ray scattering is a powerful diagnostic technique that has been used in a variety of experimental settings to determine the temperature, density, and ionization state of warm dense matter. In order to maximize the intensity of the scattered signal, the x-ray source is often placed in close proximity to the target plasma. Therefore, the interpretation of the experimental data can become complicated by the fact that the detector records photons scattered at different angles from points within the plasma volume. In addition, the target plasma that is scattering the x-rays can have significant temperature and density gradients. To address these issues, we have developed the capability to simulate x-ray scattering for realistic experimental configurations where the effects of plasma non-uniformities and a range of x-ray scattering angles are included. We will discuss the implementation details and show results relevant to previous and ongoing experimental investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.