Abstract

Ideally, a statistically representative sample of measured high-resolution wind profiles with wavelengths as small as tens of meters is required for assessment of launch vehicle ascent flight systems component capability and vehicle operability for a selected launch site. At most potential launch sites a sample of high-resolution measured wind profiles may not exist. Representative samples of Rawinsonde wind profiles are more likely to be available because of the extensive network of measurement sites established for routine measurements at 12-hr intervals in support of national and international weather observing and forecasting activity. Such a sample, although large enough to statistically represent relatively large wavelength perturbations, would be inadequate for launch system design assessment applications because the Rawinsonde system can accurately measure wind perturbations with wavelengths no smaller than 2000m (1000m altitude increment). Wavelengths less than 2000m in the raw Rawinsonde data, which tend to be dominated by un-damped spurious balloon motion and radar tracking system noise, are filtered within the data processing scheme. The Kennedy Space Center (KSC) Jimsphere wind profiles (150/month and seasonal pairs) are the only adequate high resolution (approximately 150 to 300m effective resolution, but over-sampled at 25m intervals) data that have been used extensively in launch vehicle design, operability assessments and operational protection of vehicle systems for wind perturbation uncertainty. Jimsphere wind profiles have been measured at a few other potential launch sites but the number of profiles is relatively small and the samples are not statistically representative of the site dependent wind profile variability. A simulation process has been developed for enhancement of measured low-resolution Rawinsonde profiles that are more likely to be available in the vicinity of potential launch sites and are a statistically representative sample of wind profile perturbation wavelengths greater than 2000m. The enhancement produces perturbed wind profiles with wavelengths as small as desired for application in launch vehicle ascent flight simulations and design assessments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call