Abstract

Classical frequency and time domain models of a single degree of freedom wave power device are presented. In the time domain, a convolution integral is conventionally used to represent the fluid dynamic radiation force, characterised by added mass and damping in the frequency domain. This integral is replaced by an approximate ordinary differential equation (ODE) model which is faster and more convenient in simulations. A time domain model of the fluid dynamics of an oscillating water column (OWC) device is derived to illustrate the technique. Digital simulations of the OWC are used to compare the accuracy of the classical and ODE models. The simulation of the ODE model runs about six times as fast as the classical model based on convolution, yet characterises the fluid dynamics accurately.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call