Abstract

This paper presents a 3D numerical simulation of water droplets merging under a given shock wave. We couple interpolation method to RGFM (Real Ghost Fluid Method) to improve the numerical accuracy of RGFM. The flow states of air-water interface are calculated by ARPS (approximate Riemann problem solver). Flow field is solved by Euler equation with fifth-order WENO spatial discretization and fourth-order R-K (Runge-Kutta) time discretization. We also employ fifth-order HJ-WENO to discretize level set equation to keep track of gas-liquid interface. Numerical results demonstrate that droplets shape has little change before merging and the merged droplet gradually becomes umbrella-shaped under the given shock wave. We verify that combination of RGFM with interpolation method has the property of reducing numerical error by comparing to the results without employment of interpolation method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.