Abstract

AbstractIn this work, vortex convection is simulated using a dynamic mesh adaptation procedure. In each adaptation period, the mesh is refined in the regions where the phenomena evolve and is coarsened in the regions where the phenomena deviate since the last adaptation. A simple indicator of mesh adaptation that accounts for the solution progression is defined. The generation of dynamic adaptive meshes is based on multilevel refinement/coarsening. The efficiency and accuracy of the present procedure are validated by simulating vortex convection in a uniform flow. Two unsteady compressible turbulent flows involving blade-vortex interactions are investigated to demonstrate further the applicability of the procedure. Computed results agree well with the published experimental data or numerical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.