Abstract

Voltage-sensitive dyes are an important tool in visualizing electrical activity in cardiac tissue. Until today, they have mainly been applied in cardiac electrophysiology to subsurface imaging. In the present study, we assess different imaging methods used in optical tomography with respect to their effectiveness in visualizing 3D cardiac activity. To achieve this goal, we simulate optical signals produced by excitation fronts initiated at different depths inside the myocardial wall and compare their properties for various imaging modes. Specifically, we consider scanning and broad-field illumination, including trans- and epi-illumination. We focus on the lateral optical resolution and signal intensity, as a function of the source depth. Optical diffusion theory is applied to derive a computationally efficient approximation of the point-spread function and to predict voltage-sensitive signals. Computations were performed both for fluorescent and absorptive voltage-sensitive dyes. Among all the above-mentioned methods, fluorescent coaxial scanning yields the best resolution (<2.5 mm) and gives the most information about the intramural cardiac activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.