Abstract

In this paper, the effect of a magnetic field on non-Newtonian fluid flow in a lid-driven cavity has been analyzed by Finite Difference Lattice Boltzmann Method (FDLBM). It was assumed that the viscosity of the fluid flow is shear-dependent as the power-law model has been selected for the viscosity of the flow. This study has been performed for the certain pertinent parameters of Reynolds number (Re=100–1000), Stuart number (N=0–50) and power-law index (n=0.6–1.4) as the magnetic field is applied at different inclinations of γ=0° and 90°. Results show that the increment of Reynolds number augments the effect of magnetic field on the fluid flow. Furthermore, the drop in the power-law indexes increases the influence of the magnetic field at the inclined angle of γ=90°. The greatest effect of the horizontal magnetic field (γ=0°) is observed for the power-law index of n=1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.