Abstract

Models simulating the performance of UV reactors enhance our understanding of the fundamental principles governing the operation of these units. When modeling the performance of UV reactors, governing equations for all related phenomena are derived and solved. This research presents a step-by-step methodology to setup and solve the governing equations determining the performance of UV reactors and to evaluate the results. A computational fluid dynamic (CFD) model was developed in order to simulate UV photoreactors in the Eulerian framework for chemical removal using a UV-based hydroxyl radical initiated oxidation process. Verifying the results of the integrated CFD model, a novel method was developed using a modified planar laser-induced fluorescence technique for measuring tracer concentration profiles inside the UV reactor. In addition, the components of the CFD model--hydrodynamics and radiation--were evaluated using experimental profile throughout the entire reactor. This verified procedure can be applied to the simulation and optimization of UV photoreactors with various geometries and operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.