Abstract

To investigate the molecular mechanisms involved in the very initial stages of protein unfolding, we carried out one long (1 μs) simulation of bovine β-lactoglobulin (BLG) together with three (500 ns) supporting MD runs, in which the unfolding conditions were produced by adding the osmolyte urea to the simulated systems and/or by increasing the thermal energy raising the temperature from 300 to 350 K. BLG was chosen, since it is a well-characterized model protein, for which structural and folding properties have been widely investigated by X-ray and NMR. MD trajectories were analyzed not only in terms of standard progress variables, such as backbone H-bonds, gyration radius width, secondary structure elements, but also through the scrutiny of interactions and dynamical behavior of specific key residues previously pointed out and investigated by NMR and belonging to a well known hydrophobic cluster. MD trajectories simulated in different unfolding conditions suggest that urea destabilizes BLG structure weakening protein::protein hydrophobic interactions and the hydrogen bond network. The early unfolding events, better observed at higher temperature, affect both secondary and tertiary structure of the protein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call