Abstract

The generation of ultrashort pulses in an all-fiber erbium ring laser with a highly nonlinear cavity is mathematically modeled. It is shown that ultrashort pulses with the characteristics of both stretched pulses and solitons are generated in a highly nonlinear fiber cavity. The evolution of the width, energy, and spectral width of the ultrashort pulses in the fiber laser is obtained in the mathematical analysis. It is shown that an ultrashort pulse in a highly nonlinear cavity has a minimum width of about 200 fs, a maximum spectral width at half-height of about 17 nm, and a maximum energy of about 180 pJ. The modeling results are verified by comparing them with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.