Abstract

We consider stationary Poisson line processes in the Euclidean plane and analyze properties of Voronoi tessellations induced by Poisson point processes on these lines. In particular, we describe and test an algorithm for the simulation of typical cells of this class of Cox–Voronoi tessellations. Using random testing, we validate our algorithm by comparing theoretical values of functionals of the zero cell to simulated values obtained by our algorithm. Finally, we analyze geometric properties of the typical Cox–Voronoi cell and compare them to properties of the typical cell of other well-known classes of tessellations, especially Poisson–Voronoi tessellations. Our results can be applied to stochastic–geometric modelling of networks in telecommunication and life sciences, for example. The lines can then represent roads in urban road systems, blood arteries or filament structures in biological tissues or cells, while the points can be locations of telecommunication equipment or vesicles, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call