Abstract

A two-dimensional sheet model was used to study the dynamics of reentry around a zone of functional block. The sheet is a set of parallel, continuous, and uniform cables, transversely interconnected by a brick-wall arrangement of fixed resistors. In accord with experimental observations on cardiac tissue, longitudinal propagation is continuous, whereas transverse propagation exhibits discontinuous features. The width and length of the sheet are 1.5 and 5 cm, respectively, and the anisotropy ratio is fixed at approximately 4:1. The membrane model is a modified Beeler-Reuter formulation incorporating faster sodium current dynamics. We fixed the basic wavelength and action potential duration of the propagating impulse by dividing the time constants of the secondary inward current by an integer K. Reentry was initiated by a standard cross-shock protocol, and the rotating activity appeared as curling patterns around the point of junction (the q-point) of the activation (A) and recovery (R) fronts. The curling R front always precedes the A front and is separated from it by the excitable gap. In addition, the R front is occasionally shifted abruptly through a merging with a slow-moving triggered secondary recovery front that is dissociated from the A front and q-point. Sustained irregular reentry associated with substantial excitable gap variations was simulated with short wavelengths (K = 8 and K = 4). Unsustained reentry was obtained with a longer wavelength (K = 2), leading to a breakup of the q-point locus and the triggering of new activation fronts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.