Abstract

We present a strategy based on two-dimensional arrays of coupled linear optical resonators to investigate the two-body physics of interacting bosons in one-dimensional lattices. In particular, we want to address the bound pairs in topologically non-trivial Su-Schrieffer-Heeger arrays. Taking advantage of the driven-dissipative nature of the resonators, we propose spectroscopic protocols to detect and tomographically characterize bulk doublon bands and doublon edge states from the spatially-resolved transmission spectra, and to highlight Feshbach resonance effects in two-body collision processes. We discuss the experimental feasibility using state-of-the-art devices, with a specific eye on arrays of semiconductor micropillar cavities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.