Abstract
A presumed probability density function (PDF) model for temperature fluctuation is proposed and formulated in this paper. It incorporates a two-step reaction mechanism for propane combustion and the thermal and prompt NO formation mechanisms. The present model, together with a new algebraic Reynolds stress model (ASM), is employed to simulate the turbulent combustion and NO formation in a swirl combustor. The calculated propane, carbon monoxide, and carbon dioxide concentrations agree with the measurement. The calculated gas temperature and oxygen and NO concentrations are in general agreement with the measured data. The simulated results show that NO forms mainly in the upstream region of the combustor. The flue gas recirculation effectively abates the nitrogen oxides ( NO x ) emission in the combustor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.