Abstract

Trichloroacetic acid (TCA) is a contaminant of drinking water. It induces peroxisome proliferation in livers of rats and mice and is hepatocarcinogenic in the latter species. Previous experimental studies of the kinetics of TCA in the isolated perfused rat liver (IPRL) at two doses have been reported. To gain more insight into the mechanistic processes controlling TCA kinetics in the liver a biologically based kinetic (BBK) model for the IPRL was used to analyze the experimental data. The IPRL was exposed to 25, 250, or 1000 microM TCA for 2 h in a recirculating perfusion system. These doses were not cytotoxic. The BBK model simulated the TCA concentration in perfusion medium and liver, and the biliary excretion of TCA. Separate protein binding studies showed that over 90% of TCA was bound to albumin in the perfusion medium whereas binding in liver homogenate was much lower. Integrating the information on protein binding into the BBK model, the hepatic uptake of TCA and its biliary excretion could be fitted assuming asymmetrical saturable transport at the sinusoidal membrane and linear transport at the bile canalicular membrane. To validate the BBK model, additional washout experiments were conducted in which the perfusion medium was replaced with TCA-free medium after 30 min of exposure of the liver to 1000 microM TCA. This approach illustrates the usefulness of BBK modeling for analyzing experimental kinetic data and gaining insight in kinetic mechanisms controlling the behavior of a chemical in the liver.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call