Abstract

A two-dimensional mathematical model is developed to describe transport phenomena in a packed bed of coke in front of blast furnace tuyere with and without pulverized coal injection (PCI). The model consists of two sub-models, one is pulverized coal (PC) combustion model in the blowpipe where the turbulent fluctuation in the gas phase is considered and the other is combustion model in the packed bed of coke. In this model coke particles in the raceway are treated as a continuous phase and both phases of gas and coke particles are calculated by using the Eulerian approach.This model is applied to practical operating conditions. When PC is injected into tuyere, more oxygen is consumed and higher temperature rise appears at the region closer to tuyere tip in the raceway and lower temperature is represented in the coke bed than those of all coke operation. Residence time of PC particles in the blowpipe is quite short, so its burn-off in the blowpipe is very low and the PC particles mainly burn in the raceway cavity. The burn-off of PC particle increases with the volatile matter content, but some particles reach to inner wall of tuyere when high volatile coal is used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call