Abstract

This work deals with the ultrasonic wave propagation in the cortical layer of long bones which is known as being a functionally-graded anisotropic material coupled with fluids. The motivation arises from mechanical modeling of the ultrasound axial transmission technique in vivo for cortical long bone which is known as being a functionally-graded anisotropic material. The proposed method is based on a combined Laplace-Fourier transform which substitutes a problem defined by partial differential equations into a system of differential equations established in the frequency-wavenumber domain. In the spectral domain, as radiation conditions may be exactly introduced in the infinite fluid half-spaces, only the heterogeneous solid layer needs to be analyzed using finite element method. Several numerical tests are presented showing very good performance of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.