Abstract

Many neurodegenerative diseases, such as Alzheimer’s disease, are linked to swellings occurring in long arms of neurons. Many scientists believe that these swellings result from traffic jams caused by the failure of intracellular machinery responsible for fast axonal transport; such traffic jam can plug an axon and prevent the sufficient amount of organelles to be delivered toward the synapse of the axon. Mechanistic explanation of the formation of traffic jams in axons induced by overexpression of tau protein is based on the hypothesis that the traffic jam is caused not by the failure of molecular motors to transport organelles along individual microtubules but rather by the disruption of the microtubule system in an axon, by the formation of a swirl of disoriented microtubules at a certain location in the axon. This paper investigates whether a microtubule swirl itself, without introducing into the model microtubule discontinuities in the traffic jam region, is capable of capturing the traffic jam formation. The answer to this question can provide important insight into the mechanics of the formation of traffic jams in axons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call