Abstract
A complete system of transport equations with all the important perpendicular currents is derived for the simulation of tokamak edge plasma. These transport equations are implemented in the B2.5 code and solved for the parameters of the ASDEX Upgrade tokamak. The relative roles of different mechanisms of transverse conductivity in the formation of the potential profile are studied. It is demonstrated that a reasonable potential distribution in the tokamak edge plasma can be obtained without an ad hoc assumption of the existence of the anomalous perpendicular conductivity. The role of E × B drifts in the redistribution of edge plasma and closing of the currents in the plasma is analysed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.