Abstract
The operation of the TiN/HfO2/Pt bipolar memristor has been simulated by the finite elements method using the Maxwell steady state equations as a mathematical basis. The simulation provided knowledge of the effect of conductive filament thickness on the shape of the I-V curve. The conductive filament has been considered as the highly conductive Hf ion enriched HfOx phase (x < 2) whose structure is similar to a Magneli phase. In this work a mechanism has been developed describing the formation, growth and dissolution of the HfOx phase in bipolar mode of memristor operation which provides for oxygen vacancy flux control. The conductive filament has a cylindrical shape with the radius varying within 5–10 nm. An increase in the thickness of the conductive filament leads to an increase in the area of the hysteresis loop of the I-V curve due to an increase in the energy output during memristor operation. A model has been developed which allows quantitative calculations and hence can be used for the design of bipolar memristors and assessment of memristor heat loss during operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.